Mining Conditional Contrast Patterns
نویسندگان
چکیده
AbstrAct This chapter considers the problem of " conditional contrast pattern mining. " It is related to contrast mining, where one considers the mining of patterns/models that contrast two or more datasets, classes, conditions, time periods, and so forth. Roughly speaking, conditional contrasts capture situations where a small change in patterns is associated with a big change in the matching data of the patterns. More precisely, a conditional contrast is a triple (B, F 1 , F 2) of three patterns; B is the condition/context pattern of the conditional contrast, and F 1 and F 2 are the contrasting factors of the conditional contrast. Such a conditional contrast is of interest if the difference between F 1 and F 2 as itemsets is relatively small, and the difference between the corresponding matching dataset of B∪F 1 and that of B∪F 2 is relatively large. It offers insights on " discriminating " patterns for a given condition B. Conditional contrast mining is related to frequent pattern mining and analysis in general, and to the mining and analysis of closed pattern and minimal generators in particular. It can also be viewed as a new direction for the analysis (and mining) of frequent patterns. After formalizing the concepts of conditional contrast, the chapter will provide some theoretical results on conditional contrast mining. These results (i) relate conditional 297 Mining Conditional Contrast Patterns contrasts with closed patterns and their minimal generators, (ii) provide a concise representation for conditional contrasts, and (iii) establish a so-called dominance-beam property. An efficient algorithm will be proposed based on these results, and experiment results will be reported. Related works will also be discussed.
منابع مشابه
Application of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods...
متن کاملEfficient incremental mining of contrast patterns in changing data
A contrast pattern, also known as an emerging pattern [7], is an itemset whose frequency differs significantly between two classes of data. Such patterns describe differences between datasets and have been shown to be useful for building powerful classifiers [11, 9, 2, 8] . Incrementally mining them in changing data is very important, where transactions can be inserted and deleted and mining ne...
متن کاملMining Constant Conditional Functional Dependencies for Improving Data Quality
This paper applies the data mining techniques in the area of data cleaning as effective in discovering Constant Conditional Functional Dependencies(CCFDs) from relational databases . These CCFDs are used as business rules for context dependent data validations. Conditional Functional Dependencies(CFDs) are an extension of Functional dependencies(FDs) which captures the consistency of data by su...
متن کاملConditional Probability-Based Significance Tests for Sequential Patterns in Multineuronal Spike Trains
We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to deter...
متن کاملExplanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms
We propose a new framework of explanation-oriented data mining by adding an explanation construction and evaluation phase to the data mining process. While traditional approaches concentrate on mining algorithms, we focus on explaining mined results. The mining task can be viewed as unsupervised learning that searches for interesting patterns. The construction and evaluation of mined patterns c...
متن کامل